25 research outputs found

    A guide to phylogenetic metrics for conservation, community ecology and macroecology

    Get PDF
    The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify ‘anchor’ representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices

    Global Priorities for Conserving the Evolutionary History of Sharks, Rays, and Chimaeras

    Get PDF
    In an era of accelerated biodiversity loss and limited conservation resources, systematic prioritization of species and places is essential. In terrestrial vertebrates, evolutionary distinctness has been used to identify species and locations that embody the greatest share of evolutionary history. We estimate evolutionary distinctness for a large marine vertebrate radiation on a dated taxon-complete tree for all 1,192 chondrichthyan fishes (sharks, rays and chimaeras) by augmenting a new 610-species molecular phylogeny using taxonomic constraints. Chondrichthyans are by far the most evolutionarily distinct of all major radiations of jawed vertebrates—the average species embodies 26 million years of unique evolutionary history. With this metric, we identify 21 countries with the highest richness, endemism and evolutionary distinctness of threatened species as targets for conservation prioritization. On average, threatened chondrichthyans are more evolutionarily distinct—further motivating improved conservation, fisheries management and trade regulation to avoid significant pruning of the chondrichthyan tree of life

    Biodiversity, Disparity and Evolvability

    Get PDF
    A key problem in conservation biology is how to measure biological diversity. Taxic diversity (the number of species in a community or in a local biota) is not necessarily the most important aspect, if what most matters is to evaluate how the loss of the different species may impact on the future of the surviving species and communities. Alternative approaches focus on functional diversity (a measure of the distribution of the species among the different 'jobs' in the ecosystem), others on morphological disparity, still others on phylogenetic diversity. There are three major reasons to prioritize the survival of species which provide the largest contributions to the overall phylogenetic diversity. First, evolutionarily isolated lineages are frequently characterized by unique traits. Second, conserving phylogenetically diverse sets of taxa is valuable because it conserves some sort of trait diversity, itself important in so far as it helps maintain ecosystem functioning, although a strict relationships between phylogenetic diversity and functional diversity cannot be taken for granted. Third, in this way we maximize the "evolutionary potential" depending on the evolvability of the survivors. This suggests an approach to conservation problems focussed on evolvability, robustness and phenotypic plasticity of developmental systems in the face of natural selection: in other terms, an approach based on evolutionary developmental biology
    corecore